Assessing the binocular advantage in aided vision

Aviat Space Environ Med. 2014 Sep;85(9):930-9. doi: 10.3357/ASEM.3976.2014.

Abstract

Advances in microsensors, microprocessors, and microdisplays are creating new opportunities for improving vision in degraded environments through the use of head-mounted displays. Initially, the cutting-edge technology used in these new displays will be expensive. Inevitably, the cost of providing the additional sensor and processing required to support binocularity brings the value of binocularity into question. Several assessments comparing binocular, binocular, and monocular head-mounted displays for aided vision have concluded that the additional performance, if any, provided by binocular head-mounted displays does not justify the cost. The selection of a biocular [corrected] display for use in the F-35 is a current example of this recurring decision process. It is possible that the human binocularity advantage does not carry over to the aided vision application, but more likely the experimental approaches used in the past have been too coarse to measure its subtle but important benefits. Evaluating the value of binocularity in aided vision applications requires an understanding of the characteristics of both human vision and head-mounted displays. With this understanding, the value of binocularity in aided vision can be estimated and experimental evidence can be collected to confirm or reject the presumed binocular advantage, enabling improved decisions in aided vision system design. This paper describes four computational approaches-geometry of stereopsis, modulation transfer function area for stereopsis, probability summation, and binocular summation-that may be useful in quantifying the advantage of binocularity in aided vision.

Publication types

  • Review

MeSH terms

  • Aviation
  • Depth Perception / physiology*
  • Humans
  • Military Personnel
  • Optical Devices*
  • Sensory Aids*
  • Vision, Ocular*
  • Visual Acuity
  • Visual Perception