Alpha Klotho and phosphate homeostasis

J Endocrinol Invest. 2014 Nov;37(11):1121-6. doi: 10.1007/s40618-014-0158-6. Epub 2014 Sep 7.

Abstract

The Klotho family consists of three single-pass transmembrane proteins—αKlotho, βKlotho and γKlotho. Each of them combines with fibroblast growth factor (FGF) receptors (FGFRs) to form receptor complexes for various FGF’s. αKlotho is a co-receptor for physiological FGF23 signaling and appears essential for FGF23-mediated regulation of mineral metabolism. αKlotho protein also plays a FGF23-independent role in phosphate homeostasis. Animal experimental studies and clinical observations have demonstrated that αKlotho deficiency leads to severe hyperphosphatemia; moderate elevation of αKlotho reduces serum phosphate and extremely high αKlotho induces hypophosphatemia and high-FGF23. αKlotho maintains circulating phosphate in a narrow range by modulating intestinal phosphate absorption, urinary phosphate excretion by the kidney, and phosphate distribution into bone rather than soft tissue in concerted interaction with other calciophosphotropic hormones such as PTH, FGF23, and 1,25-(OH)2 vitamin D. The role of αKlotho in maintenance of phosphate homeostasis is mediated by direct suppression of Na-dependent phosphate cotransporters in target organs. Therefore, αKlotho manipulation may be a novel strategy for genetic and acquired phosphate disorders and for medical conditions with αKlotho deficiency such as chronic kidney disease in future.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Biological Transport / physiology
  • Cardiovascular Diseases / diagnosis
  • Cardiovascular Diseases / metabolism
  • Glucuronidase / metabolism*
  • Homeostasis / physiology*
  • Humans
  • Klotho Proteins
  • Phosphates / metabolism*

Substances

  • Phosphates
  • Glucuronidase
  • Klotho Proteins