Communication: Molecular simulation study of kaolinite intercalation with realistic layer size

J Chem Phys. 2014 Sep 7;141(9):091102. doi: 10.1063/1.4894756.

Abstract

Intercalation phenomena of kaolinite in aqueous potassium acetate and in hexyl-amine solutions are studied by large scale molecular dynamics simulations. The simulated kaolinite particle is constructed from ~6.5 × 10(6) atoms, producing a particle size of ~100 nm × 100 nm × 10 nm. The simulation with potassium acetate results in a stable kaolinite-potassium acetate complex, with a basal spacing that is in close agreement with experimental data. The simulation with hexyl-amine shows signs of the experimentally observed delamination of kaolinite (the initial phase of the formation of nanoscrolls from the external layers).