A comprehensive computational model of sound transmission through the porcine lung

J Acoust Soc Am. 2014 Sep;136(3):1419. doi: 10.1121/1.4890647.

Abstract

A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This "subject-specific" model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Validation Study

MeSH terms

  • Animals
  • Computer Simulation*
  • Elasticity
  • Elasticity Imaging Techniques / methods*
  • Finite Element Analysis
  • Lung / anatomy & histology
  • Lung / diagnostic imaging*
  • Lung / physiology
  • Models, Animal
  • Models, Biological*
  • Motion
  • Porosity
  • Pressure
  • Reproducibility of Results
  • Software
  • Sound*
  • Swine
  • Ultrasonics / methods*
  • Viscosity