Controlling the ring curvature, solution assembly, and reactivity of gigantic molybdenum blue wheels

J Am Chem Soc. 2014 Oct 8;136(40):14114-20. doi: 10.1021/ja5062483. Epub 2014 Sep 29.

Abstract

We describe the synthesis, structure, self-assembly, solution chemistry, and mass spectrometry of two new gigantic decameric molybdenum blue wheels, {Mo200Ce12} (1) and {Mo100Ce6} (2), by building block rearrangement of the tetradecameric {Mo154} framework archetype and control of the architecture's curvature in solution from the addition of Ce(III). The assembly of 1 and 2 could be directed accordingly by adjusting the ionic strength and acidity of the reaction mixture. Alternatively, the dimeric cluster {Mo200Ce12} could be transformed directly to the monomeric species {Mo100Ce6} upon addition of a potassium salt. ESI-ion mobility mass spectra were successfully obtained for both {Mo200Ce12} and {Mo100Ce6}, which is the first report in molybdenum blue chemistry thereby confirming that the gigantic clusters are stable in solution and that ion mobility measurements can be used to characterize nanoscale inorganic molecules.