Genetic diversity of Salmonella pathogenicity islands SPI-5 and SPI-6 in Salmonella Newport

Foodborne Pathog Dis. 2014 Oct;11(10):798-807. doi: 10.1089/fpd.2014.1784. Epub 2014 Sep 4.

Abstract

Salmonella enterica subspecies enterica serotype Newport is one of the common serotypes causing foodborne salmonellosis outbreaks in the United States. Salmonella Newport consists of three lineages exhibiting extensive genetic diversity. Due to the importance of Salmonella pathogenicity islands 5 and 6 (SPI-5 and SPI-6) in virulence of pathogenic Salmonella, the genetic diversity of these two SPIs may relate to different potentials of Salmonella Newport pathogenicity. Most Salmonella Newport strains from North America belong to Salmonella Newport lineages II and III. A total 28 Salmonella Newport strains of lineages II and III from diverse sources and geographic locations were analyzed, and 11 additional Salmonella genomes were used as outgroup in phylogenetic analyses. SPI-5 was identified in all Salmonella Newport strains and 146 single nucleotide polymorphisms (SNPs) were detected. Thirty-nine lineage-defining SNPs were identified, including 18 nonsynonymous SNPs. Two 40-kb genomic islands (SPI5-GI1 and SPI5-GI2) encoding bacteriophage genes were found between tRNA-ser and pipA. SPI5-GI1 was only present in Salmonella Newport multidrug-resistant strains of lineage II. SPI-6 was found in all strains but three Asian strains in Salmonella Newport lineage II, whereas the three Asian strains carried genomic island SPI6-GI1 at the same locus as SPI-6 in other Salmonella. SPI-6 exhibited 937 SNPs, and phylogenetic analysis demonstrated that clustering of Salmonella Newport isolates was a reflection of their geographic origins. The sequence diversity within SPI-5 and SPI-6 suggests possible recombination events and different virulence potentials of Salmonella Newport. The SNPs could be used as biomarkers during epidemiological investigations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Genomic Islands*
  • Phylogeny
  • Polymorphism, Single Nucleotide*
  • Salmonella / classification
  • Salmonella / genetics*
  • Sequence Alignment
  • Sequence Analysis, DNA