[Comparative proteomic analysis on anti-fibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline in rats with silicosis]

Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2014 Aug;32(8):561-7.
[Article in Chinese]

Abstract

Objective: To perform a comparative proteomic analysis for identification of pulmonary proteins related to the progression of silicosis and anti-fibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP).

Methods: Bronchial instillation of SiO₂powder (for 4 or 8 weeks) was applied in rats to establish a silicosis model. Ac-SDKP treatment was performed before (prevention group) or after (treatment group) SiO₂instillation. The control group was treated by bronchial instillation of sodium chloride solution of the same volume as SiO₂powder for 4 or 8 weeks. Proteins in lung tissue were separated by two-dimensional gel electrophoresis and stained with colloidal Coomassie brilliant blue. The gel images were scanned with the Lab Scan III system and analyzed with Imagemaster 6.0. The protein spots with significant differences between two groups (i.e., P value was less than 0.05 in One-way ANOVA) and with a change in volume over 30% were defined as differential proteins. Comparison was performed between the silicosis group and control group after 4 or 8 weeks, between the Ac-SDKP treatment group and silicosis group after 8 weeks, and between the Ac-SDKP prevention group and silicosis group after 8 weeks. The differentially expressed proteins were subjected to in-gel digestion with trypsin and MALDI-TOF-MS and Mascot search engine analysis to identify these proteins.

Results: Thirty-three differential proteins were identified. In comparison with the control group (4 weeks), the silicosis group (4 weeks) had 17 up-regulated proteins and 11 down-regulated proteins. In comparison with the control group (8 weeks), the silicosis group (8 weeks) had 16 up-regulated proteins and 12 down-regulated proteins. In comparison with the silicosis group (8 weeks), the Ac-SDKP treatment group had 5 up-regulated proteins and 6 down-regulated proteins, and the Ac-SDKP prevention group had 8 up-regulated proteins and 10 down-regulated proteins.

Conclusion: Critical regulatory proteins related to silicotic fibrosis and anti-silicotic effect of Ac-SDKP have been identified. These proteins may play an important role in proliferation, apoptosis, inflammation, epithelial-mesenchymal transition, and signal transduction in silicosis.

Publication types

  • English Abstract
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Disease Models, Animal
  • Lung / metabolism
  • Male
  • Oligopeptides / therapeutic use*
  • Proteome / metabolism*
  • Rats
  • Rats, Wistar
  • Silicosis / drug therapy*
  • Silicosis / metabolism

Substances

  • Oligopeptides
  • Proteome
  • goralatide