Swab sample transfer for point-of-care diagnostics: characterization of swab types and manual agitation methods

PLoS One. 2014 Sep 2;9(9):e105786. doi: 10.1371/journal.pone.0105786. eCollection 2014.

Abstract

Background: The global need for disease detection and control has increased effort to engineer point-of-care (POC) tests that are simple, robust, affordable, and non-instrumented. In many POC tests, sample collection involves swabbing the site (e.g., nose, skin), agitating the swab in a fluid to release the sample, and transferring the fluid to a device for analysis. Poor performance in sample transfer can reduce sensitivity and reproducibility.

Methods: In this study, we compared bacterial release efficiency of seven swab types using manual-agitation methods typical of POC devices. Transfer efficiency was measured using quantitative PCR (qPCR) for Staphylococcus aureus under conditions representing a range of sampling scenarios: 1) spiking low-volume samples onto the swab, 2) submerging the swab in excess-volume samples, and 3) swabbing dried sample from a surface.

Results: Excess-volume samples gave the expected recovery for most swabs (based on tip fluid capacity); a polyurethane swab showed enhanced recovery, suggesting an ability to accumulate organisms during sampling. Dry samples led to recovery of ∼20-30% for all swabs tested, suggesting that swab structure and volume is less important when organisms are applied to the outer swab surface. Low-volume samples led to the widest range of transfer efficiencies between swab types. Rayon swabs (63 µL capacity) performed well for excess-volume samples, but showed poor recovery for low-volume samples. Nylon (100 µL) and polyester swabs (27 µL) showed intermediate recovery for low-volume and excess-volume samples. Polyurethane swabs (16 µL) showed excellent recovery for all sample types. This work demonstrates that swab transfer efficiency can be affected by swab material, structure, and fluid capacity and details of the sample. Results and quantitative analysis methods from this study will assist POC assay developers in selecting appropriate swab types and transfer methods.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Diagnostic Services*
  • Humans
  • Point-of-Care Systems*
  • Reference Standards
  • Specimen Handling / methods*
  • Staphylococcus aureus / isolation & purification

Grants and funding

The work presented in this paper was carried out in part with support from the Defense Advanced Research Projects Agency Defense Sciences Office under a grant to the University of Washington (grant number HR0011-11-2-0007, PI Paul Yager) with collaborators at PATH, GE Global Research, and ElitechGroup North America Inc./Epoch Biosciences. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.