New insight into the hydrocarbon-pool chemistry of the methanol-to-olefins conversion over zeolite H-ZSM-5 from GC-MS, solid-state NMR spectroscopy, and DFT calculations

Chemistry. 2014 Sep 22;20(39):12432-43. doi: 10.1002/chem.201403972. Epub 2014 Sep 1.

Abstract

Over zeolite H-ZSM-5, the aromatics-based hydrocarbon-pool mechanism of methanol-to-olefins (MTO) reaction was studied by GC-MS, solid-state NMR spectroscopy, and theoretical calculations. Isotopic-labeling experimental results demonstrated that polymethylbenzenes (MBs) are intimately correlated with the formation of olefin products in the initial stage. More importantly, three types of cyclopentenyl cations (1,3-dimethylcyclopentenyl, 1,2,3-trimethylcyclopentenyl, and 1,3,4-trimethylcyclopentenyl cations) and a pentamethylbenzenium ion were for the first time identified by solid-state NMR spectroscopy and DFT calculations under both co-feeding ([(13) C6 ]benzene and methanol) conditions and typical MTO working (feeding [(13) C]methanol alone) conditions. The comparable reactivity of the MBs (from xylene to tetramethylbenzene) and the carbocations (trimethylcyclopentenyl and pentamethylbenzium ions) in the MTO reaction was revealed by (13) C-labeling experiments, evidencing that they work together through a paring mechanism to produce propene. The paring route in a full aromatics-based catalytic cycle was also supported by theoretical DFT calculations.

Keywords: carbocations; olefins; reaction mechanisms; solid-state NMR spectroscopy; zeolites.