Designing of the massive gas injection valve for the joint Texas experimental tokamak

Rev Sci Instrum. 2014 Aug;85(8):083504. doi: 10.1063/1.4891864.

Abstract

In order to mitigate the negative effects of the plasma disruption a massive gas injection (MGI) valve is designed for the joint Texas experimental tokamak. The MGI valve is based on the eddy-current repulsion mechanism. It has a fueling volume of 30 ml. The piston of the MGI valve is made by non-ferromagnetic material, so it can be installed close to the vacuum vessel which has a strong toroidal magnetic field. A diode is use to prevent current oscillation in the discharge circuit. The drive coil of the valve is installed outside the gas chamber. The opening characteristics and the gas flow of the MGI valve have been tested by a 60 l vacuum chamber. Owing to the large electromagnetic force the reaction time of the valve is shorter than 0.3 ms. Duration for the opening of the MGI valve is in the order of 10 ms.