Cerebral vasomotor reactivity: steady-state versus transient changes in carbon dioxide tension

Exp Physiol. 2014 Nov;99(11):1499-510. doi: 10.1113/expphysiol.2014.081190. Epub 2014 Aug 28.

Abstract

Cerebral vasomotor reactivity (CVMR) to changes in arterial carbon dioxide tension (P aCO 2) is assessed during steady-state or transient changes in P aCO 2. This study tested the following two hypotheses: (i) that CVMR during steady-state changes differs from that during transient changes in P aCO 2; and (ii) that CVMR during rebreathing-induced hypercapnia would be blunted when preceded by a period of hyperventilation. For each hypothesis, end-tidal carbon dioxide tension (P ET , CO 2) middle cerebral artery blood velocity (CBFV), cerebrovascular conductance index (CVCI; CBFV/mean arterial pressure) and CVMR (slope of the linear regression between changes in CBFV and CVCI versus P ET , CO 2) were assessed in eight individuals. To address the first hypothesis, measurements were made during the following two conditions (randomized): (i) steady-state increases in P ET , CO 2 of 5 and 10 Torr above baseline; and (ii) rebreathing-induced transient breath-by-breath increases in P ET , CO 2. The linear regression for CBFV versus P ET , CO 2 (P = 0.65) and CVCI versus P ET , CO 2 (P = 0.44) was similar between methods; however, individual variability in CBFV or CVCI responses existed among subjects. To address the second hypothesis, the same measurements were made during the following two conditions (randomized): (i) immediately following a brief period of hypocapnia induced by hyperventilation for 1 min followed by rebreathing; and (ii) during rebreathing only. The slope of the linear regression for CBFV versus P ET , CO 2 (P < 0.01) and CVCI versus P ET , CO 2 (P < 0.01) was reduced during hyperventilation plus rebreathing relative to rebreathing only. These results indicate that cerebral vasomotor reactivity to changes in P aCO 2 is similar regardless of the employed methodology to induce changes in P aCO 2 and that hyperventilation-induced hypocapnia attenuates the cerebral vasodilatory responses during a subsequent period of rebreathing-induced hypercapnia.

Publication types

  • Randomized Controlled Trial
  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Carbon Dioxide / metabolism
  • Carbon Dioxide / physiology*
  • Cerebrovascular Circulation / physiology*
  • Female
  • Humans
  • Hypercapnia / physiopathology
  • Hyperventilation / physiopathology
  • Hypocapnia / physiopathology
  • Male
  • Oxygen / blood
  • Respiration
  • Vasomotor System / physiology*
  • Young Adult

Substances

  • Carbon Dioxide
  • Oxygen