Coexistence of two sharp-mode couplings and their unusual momentum dependence in the superconducting state of Bi2Sr2CaCu2O(8+δ) revealed by laser-based angle-resolved photoemission

Phys Rev Lett. 2013 Sep 6;111(10):107005. doi: 10.1103/PhysRevLett.111.107005. Epub 2013 Sep 5.

Abstract

High-resolution laser-based angle-resolved photoemission measurements have been carried out on Bi2Sr2CaCu2O(8+δ) (Bi2212) superconductors to investigate momentum dependence of electron coupling with collective excitations (modes). Two coexisting energy scales are clearly revealed over a large momentum space for the first time in the superconducting state of the overdoped Bi2212 superconductor. These two energy scales exhibit distinct momentum dependence: one keeps its energy near 78 meV over a large momentum space while the other changes its energy from ∼40 meV near the antinodal region to ∼70 meV near the nodal region. These observations provide a new picture on momentum evolution of electron-boson coupling in Bi2212 that electrons are coupled with two sharp modes simultaneously over a large momentum space in the superconducting states. Their unusual momentum dependence poses a challenge to our current understanding of electron-mode-coupling and its role for high-temperature superconductivity in cuprate superconductors.