Ultrafast photocarrier dynamics in nanocrystalline ZnOxNy thin films

Opt Lett. 2014 Sep 1;39(17):5062-5. doi: 10.1364/OL.39.005062.

Abstract

We examined the ultrafast dynamics of photocarriers in nanocrystalline ZnOxNy thin films as a function of compositional variation using femtosecond differential transmittance spectroscopy. The relaxation dynamics of photogenerated carriers and electronic structures are strongly dependent on nitrogen concentration. Photocarriers of ZnOxNy films relax on two different time scales. Ultrafast relaxation over several picoseconds is observed for all chemical compositions. However, ZnO and oxygen-rich phases show slow relaxation (longer than several nanoseconds), whereas photocarriers of films with high nitrogen concentrations relax completely on subnanosecond time scales. These relaxation features may provide a persistent photocurrent-free and prompt photoresponsivity for ZnOxNy with high nitrogen concentrations, as opposed to ZnO for display applications.