Different yet similar: evolution of imprinting in flowering plants and mammals

F1000Prime Rep. 2014 Aug 1:6:63. doi: 10.12703/P6-63. eCollection 2014.

Abstract

Genomic imprinting refers to a form of epigenetic gene regulation whereby alleles are differentially expressed in a parent-of-origin-dependent manner. Imprinting evolved independently in flowering plants and in therian mammals in association with the elaboration of viviparity and a placental habit. Despite the striking differences in plant and animal reproduction, genomic imprinting shares multiple characteristics between them. In both groups, imprinted expression is controlled, at least in part, by DNA methylation and chromatin modifications in cis-regulatory regions, and many maternally and paternally expressed genes display complementary dosage-dependent effects during embryogenesis. This suggests that genomic imprinting evolved in response to similar selective pressures in flowering plants and mammals. Nevertheless, there are important differences between plant and animal imprinting. In particular, genomic imprinting has been shown to be more flexible and evolutionarily labile in plants. In mammals, imprinted genes are organized mainly in highly conserved clusters, whereas in plants they occur in isolation throughout the genome and are affected by local gene duplications. There is a large degree of intra- and inter-specific variation in imprinted gene expression in plants. These differences likely reflect the distinct life cycles and the different evolutionary dynamics that shape plant and animal genomes.

Publication types

  • Review