Neutron diffraction of ice in hydrogels

J Phys Chem B. 2014 Nov 26;118(47):13453-7. doi: 10.1021/jp508269b. Epub 2014 Sep 4.

Abstract

Neutron diffraction patterns for deuterated poly-N,N,-dimethylacrylamide (PDMAA) hydrogels were measured from 10 to 300 K to investigate the structure and properties of water in the gels. Diffraction peaks observed below 250 K indicate the existence of ice in the hydrogels. Some diffraction peaks from the ice are at lower diffraction angles than those in ordinary hexagonal ice (Ih). These shifts in peaks indicate that the lattice constants of the a and c axes in the ice are about 0.29 and 0.3% higher than those in ice Ih, respectively. The results show that bulk low-density ice can exist in PDMAA hydrogels. The distortions in the lattice structure of ice imply significant interactions between water molecules and the surrounding polymer chains, which play an important role in the chemical and mechanical properties of the hydrogel.