The correlation of the presence and expression levels of cry genes with the insecticidal activities against Plutella xylostella for Bacillus thuringiensis strains

Toxins (Basel). 2014 Aug 19;6(8):2453-70. doi: 10.3390/toxins6082453.

Abstract

The use of Bacillus thuringiensis (Bt) strains with high insecticidal activity is essential for the preparation of bioinsecticide. In this study, for 60 Bt strains isolated in Taiwan, their genotypes and the correlation of some cry genes as well as the expression levels of cry1 genes, with their insecticidal activities against Plutella xylostella, were investigated. Pulsed field gel electrophoresis (PFGE) and random amplified polymorphic DNA (RAPD) results revealed that the genotypes of these Bt strains are highly diversified. Also, a considerable number of the Bt strains isolated in Taiwan were found to have high insecticidal activities. Since strains that showed individual combined patterns of PFGE and RAPD exhibited distinct insecticidal activities against P. xylostella, thus, these genotypes may be useful for the identification of the new Bt strains and those which have been used in bioinsecticides. In addition, although the presence of cry2Aa1 may have a greater effect on the insecticidal activity of Bt strains in bioassay than other cry genes, only high expression level of cry1 genes plays a key role to determine the insecticidal activity of Bt strains. In conclusion, both RAPD and PFGE are effective in the differentiation of Bt strains. The presence of cry2Aa1 and, especially, the expression level of cry1 genes are useful for the prediction of the insecticidal activities of Bt strains against P. xylostella.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacillus thuringiensis Toxins
  • Bacillus thuringiensis* / genetics
  • Bacterial Proteins / genetics*
  • Bacterial Proteins / pharmacology*
  • Endotoxins / genetics*
  • Endotoxins / pharmacology*
  • Gene Expression
  • Genotype
  • Hemolysin Proteins / genetics*
  • Hemolysin Proteins / pharmacology*
  • Insecticides / pharmacology*
  • Lepidoptera / drug effects*
  • Pest Control, Biological

Substances

  • Bacillus thuringiensis Toxins
  • Bacterial Proteins
  • Endotoxins
  • Hemolysin Proteins
  • Insecticides
  • insecticidal crystal protein, Bacillus Thuringiensis