Personalized surgical repair of left ventricular aneurysm with computer-assisted ventricular engineering

Interact Cardiovasc Thorac Surg. 2014 Nov;19(5):801-6; discussion 806. doi: 10.1093/icvts/ivu219. Epub 2014 Aug 21.

Abstract

Objectives: Although circular ventricular resection techniques are the gold standard of left ventricular (LV) restoration, these techniques can lead to suboptimal results. Postoperative systolic resection can be inadequate, because it must be planned on a heart stopped in diastole. Low cardiac output due to insufficient LV volume results in a potentially unstable condition, and cannot be corrected. Our aim was to find a preoperative method to minimize risk and maximize outcome with ventricular restoration.

Methods: We created a novel method combining surgery with gadolinium-enhanced magnetic resonance to construct a preoperative 3D systolic heart model. The model was utilized to determine resection points that could be intraoperatively used. According to our calculations with the predetermined resection line, the calculated percentage reduction in LV volume was above 30%, and LV volumes were predicted above normal values; thus, performing the operation using these resection points is likely to be safe and effective. We had a mixed, real-life patient group: mitral insufficiency or pulmonary hypertension were not exclusion criteria.

Results: Forty-one procedures (12 concomitant mitral valve plasty) were done on consecutive patients in a single-centre experience. The incidence rate of major adverse clinical events was 32% postoperatively (n = 13). Control MRI showed a significant improvement in ejection fraction (18.3 ± 4.3 vs 31.3 ± 3.3; P = 0.04). All patients improved their New York Heart Association (NYHA) class postoperatively (40 patients NYHA III/IV versus 40 NYHA I/II). During long-term follow-up, 1 patient died due to end-stage heart failure.

Conclusions: Using this model, we were able to find the optimal resection line providing an excellent postoperative result, thus minimizing the risk of low cardiac output syndrome.

Keywords: Ischaemic heart disease; Left ventricular geometry; Surgical restoration of left ventricle.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Cardiac Surgical Procedures / methods*
  • Computer Simulation*
  • Female
  • Follow-Up Studies
  • Heart Aneurysm / diagnosis
  • Heart Aneurysm / surgery*
  • Heart Ventricles*
  • Humans
  • Magnetic Resonance Imaging, Cine
  • Male
  • Retrospective Studies
  • Surgery, Computer-Assisted / methods*
  • User-Computer Interface*