Near-infrared Raman spectroscopy for assessing biochemical changes of cervical tissue associated with precarcinogenic transformation

Analyst. 2014 Nov 7;139(21):5379-86. doi: 10.1039/c4an00795f.

Abstract

Raman spectroscopy measures the inelastically scattered light from tissue that is capable of identifying native tissue biochemical constituents and their changes associated with disease transformation. This study aims to characterize the Raman spectroscopic properties of cervical tissue associated with the multi-stage progression of cervical precarcinogenic sequence. A rapid-acquisition fiber-optic near-infrared (NIR) Raman diagnostic system was employed for tissue Raman spectral measurements at 785 nm excitation. A total of 68 Raman spectra (23 benign, 29 low-grade squamous intraepithelial lesions (LSIL) and 16 high grade squamous intraepithelial lesions (HSIL)) were measured from 25 cervical tissue biopsy specimens, as confirmed by colposcopy-histopathology. The semi-quantitative biochemical modeling based on the major biochemicals (i.e., DNA, proteins (histone, collagen), lipid (triolein) and carbohydrates (glycogen)) in cervical tissue uncovers the stepwise accumulation of biomolecular changes associated with progressive cervical precarcinogenesis. Multi-class partial least squares-discriminant analysis (PLS-DA) together with leave-one tissue site-out, cross-validation yielded the diagnostic sensitivities of 95.7%, 82.8% and 81.3%; specificities of 100.0%, 92.3% and 88.5%,for discrimination among benign, LSIL and HSIL cervical tissues, respectively. This work suggests that the Raman spectral biomarkers have identified the potential to be used for monitoring the multi-stage cervical precarcinogenesis, forming the foundation of applying NIR Raman spectroscopy for the early diagnosis of cervical precancer in vivo at the molecular level.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Squamous Cell / metabolism
  • Carcinoma, Squamous Cell / pathology
  • Cell Transformation, Neoplastic
  • Cervix Uteri / metabolism*
  • Female
  • Humans
  • Spectroscopy, Near-Infrared / methods*
  • Spectrum Analysis, Raman / methods*
  • Uterine Cervical Dysplasia / metabolism*
  • Uterine Cervical Dysplasia / pathology
  • Uterine Cervical Neoplasms / metabolism*
  • Uterine Cervical Neoplasms / pathology