Structural study of the apatite Nd₈Sr₂Si₆O₂₆ by Laue neutron diffraction and single-crystal Raman spectroscopy

Inorg Chem. 2014 Sep 2;53(17):9416-23. doi: 10.1021/ic501558r. Epub 2014 Aug 20.

Abstract

A single-crystal structure determination of Nd8Sr2Si6O26 apatite, a prototype intermediate-temperature electrolyte for solid oxide fuel cells grown by the floating-zone method, was completed using the combination of Laue neutron diffraction and Raman spectroscopy. While neutron diffraction was in good agreement with P6₃/m symmetry, the possibility of P6₃ could not be convincingly excluded. This ambiguity was removed by the collection of orientation-dependent Raman spectra that could only be consistent with P6₃/m. The composition of Nd8Sr2Si6O26 was independently verified by powder X-ray diffraction in combination with electron probe microanalysis, with the latter confirming a homogeneous distribution of Sr and the absence of chemical zonation commonly observed in apatites. This comprehensive crystallochemical description of Nd8Sr2Si6O26 provides a baseline to quantify the efficacy of cation vacancies, oxygen superstoichiometry, and symmetry modification for promoting oxygen-ion mobility.