Anomalous crystallization as a signature of the fragile-to-strong transition in metallic glass-forming liquids

J Phys Chem B. 2014 Aug 28;118(34):10258-65. doi: 10.1021/jp504370y. Epub 2014 Aug 19.

Abstract

We study the fragile-to-strong (F-S) transition of metallic glass-forming liquids (MGFLs) by measuring the thermal response during annealing and dynamic heating of La55Al25Ni5Cu15 glass ribbons fabricated at different cooling rates. We find that the glasses fabricated in the intermediate regime of cooling rates (15-25 m/s) exhibit an anomalous crystallization behavior upon reheating as compared to the glasses formed at other cooling rates. This anomalous crystallization behavior implies the existence of a thermodynamic F-S transition, could be used as an alternative method for detecting the F-S transition in MGFLs, and sheds light on the structure origin of the F-S transition. This work also contributes to obtaining a general thermodynamic picture of the F-S transition in supercooled liquids.