Photocatalytic generation of solar fuels from the reduction of H2O and CO2: a look at the patent literature

Phys Chem Chem Phys. 2014 Oct 7;16(37):19790-827. doi: 10.1039/c4cp02828g.

Abstract

The application of photocatalysis in environment remediation as well as in the generation of useful fuels from the reduction of water (hydrogen) and of carbon dioxide (methanol, carbon monoxide and/or methane) has been investigated largely in the last four decades. A significant part (12-13%) of the literature on the generation of such fuels is found in patents. Accordingly, the present article presents a selection of the patent literature on the theme. Photocatalysts, whether pure or doped, solid solutions or composites, reported in patents are reviewed along with the corresponding preparative methods and the photocatalytic performance. The absorption of light by such materials has been extended toward the red side of the spectrum, so that a better use of solar irradiation has been obtained, but the expected improvement of the catalytic effect has not always been achieved. The causes of these results and the way for improving the performance in the various steps of the process (e.g. avoiding charge recombination or catalyst corrosion) have been documented. The correct use of the term water splitting and the fundamentals of photochemical hydrogen evolution in the presence of a sacrificial electron donor (e.g., alcohols) are discussed. Quantitative data about the amount of hydrogen evolved or carbon-based fuels produced are indicated whenever available.