[Effects of inoculating plant growth-promoting rhizobacteria on the biological characteristics of walnut (Juglans regia) rhizosphere soil under drought condition]

Ying Yong Sheng Tai Xue Bao. 2014 May;25(5):1475-82.
[Article in Chinese]

Abstract

Effects of four plant growth-promoting rhizobacteria (PGPR) , namely Pseudomonas sp. YT3, Bacillus subtilis DZ1, B. cereus L90 and B. fusiformis L13 on the biological characteristics of walnut (Juglans regia) rhizosphere soil under drought stress were investigated. Results showed that drought stress had little effect on available nutrients of walnut rhizosphere soil, but significantly decreased the activity of organic carbon by 18.4% and increased the pH from 7.34 to 7.79. Under drought stress condition, the inoculation of Bacillus cereus L90 significantly increased high-labile organic carbon in walnut rhizosphere by 14.5% relative to the un-inoculated control, and decreased the pH to 7.41. Compared with the irrigated control, the total microbial populations, root exudates, microbial biomass carbon, and microbial biomass nitrogen in walnut rhizosphere soil were significantly decreased by 36.0%, 20.7%, 33.5% and 30.7%, respectively, because of drought stress. However, L90 inoculation decreased these deficits to 14.1%, 10.3%, 12.1% and 12.7%, respectively. Some terminal restriction fragments (T-RFs) disappeared under the drought condition and PGPR inoculation had great influence on T-RFs according to Terminal Restriction Fragment Length Polymorphism profiles. The Margalef index and the Shannon index of walnut rhizosphere soil significantly decreased, but the Simpson index increased relative to the irrigated control. Compared with the un-inoculated control, the Margalef index significantly increased from 0.42 to 0.99, as well as the Shannon index increased from 0.52 to 0.98. However, the Simpson index de- creased from 0.60 to 0.39. Inoculating YT3, DZ1 and L13 had weaker effects on the biological characteristics of walnut rhizosphere soil compared to inoculating L90, suggesting L90 inoculation could interfere with the suppression of drought stress to the biological characteristics of walnut rhizosphere soil.

MeSH terms

  • Bacillus / physiology
  • Biomass
  • Carbon / analysis
  • Droughts*
  • Juglans / microbiology*
  • Nitrogen / analysis
  • Plant Roots
  • Pseudomonas / physiology
  • Rhizosphere*
  • Soil
  • Soil Microbiology*

Substances

  • Soil
  • Carbon
  • Nitrogen