Synthesis, structure, and magnetic and electrochemical properties of quasi-linear and linear iron(I), cobalt(I), and nickel(I) amido complexes

Inorg Chem. 2014 Sep 2;53(17):9400-6. doi: 10.1021/ic501534f. Epub 2014 Aug 13.

Abstract

Three potassium crown ether salts, [K(Et2O)2(18-crown-6)][Fe{N(SiMe3)Dipp}2] (1a; Dipp = C6H3-2,6-Pr(i)2), [K(18-crown-6)][Fe{N(SiMe3)Dipp}2]·0.5PhMe (1b), and [K(18-crown-6)][M{N(SiMe3)Dipp}2] (M = Co, 2; M = Ni, 3), of the two-coordinate linear or near-linear bis-amido monoanions [M{N(SiMe3)Dipp}2](-) (M = Fe, Co, Ni) were synthesized by one-electron reduction of the neutral precursors M{N(SiMe3)Dipp}2 with KC8 in the presence of 18-crown-6. They were characterized by X-ray crystallography, UV-vis spectroscopy, cyclic voltammetry, and magnetic measurements. The anions feature lengthened M-N bonds in comparison with their neutral precursors, with slightly bent coordination (N-Fe-N = ca. 172°) for the iron(I) complex, but linear coordination for the cobalt(I) and nickel(I) complexes. Fits of the temperature dependence of χMT of 1 and 2 reveal that the iron(I) and cobalt(I) complexes have large negative D zero-field splittings and a substantial orbital contribution to their magnetic moments with L = 2, whereas the nickel(I) complex has at most a small orbital contribution to its magnetic moment. The magnetic results have been used to propose an ordering of the 3d orbitals in each of the complexes.