Single-cell transcriptome in the identification of disease biomarkers: opportunities and challenges

J Transl Med. 2014 Aug 12:12:212. doi: 10.1186/s12967-014-0212-3.

Abstract

Single cell transcriptome defined as the entire RNA or polyadenylated products of RNA polymerase II on a cell can describe the gene regulation networks responsible for physiological functions, behaviours, and phenotypes in response to signals and microenvironmental changes. Single cell transcriptome/sequencing has the special power to investigate small groups of differentiating cells, circulating tumour cells, or tissue stem cells. A large number of factors may influence the extent of single-cell heterogeneity within a system. It is the opportunity that the single-cell sequencing can be used for the identification of genetic changes in rare cells, e.g. cancer and tissue stem cells, in clinical samples. The methodologies of single-cell sequencing have been improved and developed with the increase of the understanding and attention. The clinical research and application of the single cell sequencing analysis are expected to identify and validate disease-specific biomarkers, network biomarkers, dynamic network biomarkers. The single cell research and value will be also dependent upon the understanding of genomic heterogeneity, planning and design of study protocol, representative of selected and targeted cells, and sensitivity and repeatability of the methodology. The single cell sequencing can be used to develop new diagnostics, monitor disease progresses, measure responses to therapies, and predict the prognosis of patients, although there are still a large number of challenges and difficulties to be faced. It would be more values and specificities of the single cell sequencing to integrate with the function of cells, organs, and systems of the body, the clinical phenotypes of patients, and the description of clinical bioinformatics.

Publication types

  • Editorial

MeSH terms

  • Disease / genetics*
  • Gene Expression Profiling / methods*
  • Genetic Heterogeneity
  • Genetic Markers
  • Humans
  • Sequence Analysis, RNA
  • Single-Cell Analysis / methods*
  • Transcriptome*

Substances

  • Genetic Markers