A framework for identifying plant species to be used as 'ecological engineers' for fixing soil on unstable slopes

PLoS One. 2014 Aug 8;9(8):e95876. doi: 10.1371/journal.pone.0095876. eCollection 2014.

Abstract

Major reforestation programs have been initiated on hillsides prone to erosion and landslides in China, but no framework exists to guide managers in the choice of plant species. We developed such a framework based on the suitability of given plant traits for fixing soil on steep slopes in western Yunnan, China. We examined the utility of 55 native and exotic species with regard to the services they provided. We then chose nine species differing in life form. Plant root system architecture, root mechanical and physiological traits were then measured at two adjacent field sites. One site was highly unstable, with severe soil slippage and erosion. The second site had been replanted 8 years previously and appeared to be physically stable. How root traits differed between sites, season, depth in soil and distance from the plant stem were determined. Root system morphology was analysed by considering architectural traits (root angle, depth, diameter and volume) both up- and downslope. Significant differences between all factors were found, depending on species. We estimated the most useful architectural and mechanical traits for physically fixing soil in place. We then combined these results with those concerning root physiological traits, which were used as a proxy for root metabolic activity. Scores were assigned to each species based on traits. No one species possessed a suite of highly desirable traits, therefore mixtures of species should be used on vulnerable slopes. We also propose a conceptual model describing how to position plants on an unstable site, based on root system traits.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Ecosystem
  • Forests*
  • Plant Physiological Phenomena*
  • Plant Roots / anatomy & histology
  • Plant Roots / physiology
  • Plants / anatomy & histology*
  • Soil / chemistry*
  • Species Specificity

Substances

  • Soil

Grants and funding

Funding was provided by a PhD bursary (Murielle Ghestem) from the French Government and AgroParisTech, the CNRS funded project ‘EcoPente,’ an INRA ‘Jeune Equipe’ and the BMU International Climate Initiative funded project ‘Ecosystems Protecting Infrastructure and Communities’ (EPIC), coordinated by IUCN and ProAct Network. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.