Mercury in Arctic snow: quantifying the kinetics of photochemical oxidation and reduction

Sci Total Environ. 2015 Mar 15:509-510:115-32. doi: 10.1016/j.scitotenv.2014.07.056. Epub 2014 Aug 3.

Abstract

Controlled experiments were performed with frozen and melted Arctic snow to quantify relationships between mercury photoreaction kinetics, ultra violet (UV) radiation intensity, and snow ion concentrations. Frozen (-10°C) and melted (4°C) snow samples from three Arctic sites were exposed to UV (280-400 nm) radiation (1.26-5.78 W · m(-2)), and a parabolic relationship was found between reduction rate constants in frozen and melted snow with increasing UV intensity. Total photoreduced mercury in frozen and melted snow increased linearly with greater UV intensity. Snow with the highest concentrations of chloride and iron had larger photoreduction and photooxidation rate constants, while also having the lowest Hg(0) production. Our results indicate that the amount of mercury photoreduction (loss from snow) is the highest at high UV radiation intensities, while the fastest rates of mercury photoreduction occurred at both low and high intensities. This suggests that, assuming all else is equal, earlier Arctic snow melt periods (when UV intensities are less intense) may result in less mercury loss to the atmosphere by photoreduction and flux, since less Hg(0) is photoproduced at lower UV intensities, thereby resulting in potentially greater mercury transport to aquatic systems with snowmelt.

Keywords: Arctic; Kinetics; Mercury; Photochemistry; Snow; Snowmelt.

Publication types

  • Research Support, Non-U.S. Gov't