Early metamorphic insertion technology for insect flight behavior monitoring

J Vis Exp. 2014 Jul 12:(89):50901. doi: 10.3791/50901.

Abstract

Early Metamorphosis Insertion Technology (EMIT) is a novel methodology for integrating microfabricated neuromuscular recording and actuation platforms on insects during their metamorphic development. Here, the implants are fused within the structure and function of the neuromuscular system as a result of metamorphic tissue remaking. The implants emerge with the insect where the development of tissue around the electronics during pupal development results in a bioelectrically and biomechanically enhanced tissue interface. This relatively more reliable and stable interface would be beneficial for many researchers exploring the neural basis of the insect locomotion with alleviated traumatic effects caused during adult stage insertions. In this article, we implant our electrodes into the indirect flight muscles of Manduca sexta. Located in the dorsal-thorax, these main flight powering dorsoventral and dorsolongitudinal muscles actuate the wings and supply the mechanical power for up and down strokes. Relative contraction of these two muscle groups has been under investigation to explore how the yaw maneuver is neurophysiologically coordinated. To characterize the flight dynamics, insects are often tethered with wires and their flight is recorded with digital cameras. We also developed a novel way to tether Manduca sexta on a magnetically levitating frame where the insect is connected to a commercially available wireless neural amplifier. This set up can be used to limit the degree of freedom to yawing "only" while transmitting the related electromyography signals from dorsoventral and dorsolongitudinal muscle groups.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Video-Audio Media

MeSH terms

  • Animals
  • Behavior, Animal / physiology
  • Electrodes, Implanted*
  • Flight, Animal / physiology*
  • Manduca / physiology*
  • Monitoring, Physiologic / instrumentation
  • Monitoring, Physiologic / methods*