Conductive water/alcohol-soluble neutral fullerene derivative as an interfacial layer for inverted polymer solar cells with high efficiency

ACS Appl Mater Interfaces. 2014 Aug 27;6(16):14189-95. doi: 10.1021/am503510z. Epub 2014 Aug 6.

Abstract

Dipole induced vacuum level shift has been demonstrated to be responsible for the enhanced efficiency in polymer solar cells (PSCs).The modified energy level alignment could reduce the energy barrier and facilitate charge transport, thereby increasing the efficiency of PSCs. Herein, we report a new mechanism toward enhanced efficiency by using a nondipolar water/alcohol-soluble neutral fullerene derivative to reengineer the surface of the zinc oxide (ZnO) electron extraction layer (EEL) in inverted PSCs. Because of the neutral property (ion-free) of the fullerene derivatives, no dipole moment was introduced at the EEL/active layer interface. A negligible change in open-circuit voltage was observed from inverted PSCs with the neutral fullerene derivative layer. The neutral fullerene derivative layer greatly increased the surface electronic conductivity of the ZnO EEL, suppressed surface charge recombination, and increased the short-circuit current density and fill factor. An overall power conversion efficiency increase of more than 30% from inverted PSCs was obtained. These results demonstrate that the surface electronic conductivity of the EEL plays an important role in high performance inverted PSCs.

Publication types

  • Research Support, Non-U.S. Gov't