Monitoring of sixteen fragrance allergens and two polycyclic musks in wastewater treatment plants by solid phase microextraction coupled to gas chromatography

Chemosphere. 2015 Jan:119:363-370. doi: 10.1016/j.chemosphere.2014.06.072. Epub 2014 Jul 23.

Abstract

A methodology based on headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) determination was developed for the monitoring and evaluation of the removal efficiency of 16 common fragrance allergens and two polycyclic musks in wastewater treatment plants (WWTPs). An experimental design with a full factorial model was applied to evaluate the effects of the experimental parameters on the extraction (e.g., salt content, time and extraction temperature). After determining the optimum conditions (2.4 g NaCl, 45 min at 90 °C), an external calibration was performed and quality parameters of the proposed method were evaluated. Method detection limits in the range of 0.01-1.7 μg L(-1) were obtained. Satisfactory inter-day precision values between 4% and 23% (n=5) were obtained for most compounds. The method was applied to the monitoring of the target analytes in samples from two WWTPs. Seven target compounds were detected at the primary effluent of both plants at μg L(-1) levels. Limonene, linalool and eugenol were quantitatively eliminated during the secondary treatments of both WWTPs, while lilial, benzyl salicylate, galaxolide, and tonalide were still detected at the effluent waters.

Keywords: Allergens; Monitoring; Polycyclic musks; Solid phase microextraction; Wastewaters.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acyclic Monoterpenes
  • Aldehydes / analysis
  • Allergens / analysis*
  • Benzopyrans / analysis
  • Cyclohexenes / analysis
  • Eugenol / analysis
  • Fatty Acids, Monounsaturated / analysis*
  • Gas Chromatography-Mass Spectrometry / methods
  • Limonene
  • Monoterpenes
  • Odorants / analysis
  • Perfume / analysis*
  • Salicylates / analysis
  • Solid Phase Microextraction / methods
  • Terpenes / analysis
  • Tetrahydronaphthalenes / analysis
  • Wastewater / analysis
  • Water Pollutants, Chemical / analysis*

Substances

  • Acyclic Monoterpenes
  • Aldehydes
  • Allergens
  • Benzopyrans
  • Cyclohexenes
  • Fatty Acids, Monounsaturated
  • Monoterpenes
  • Perfume
  • Salicylates
  • Terpenes
  • Tetrahydronaphthalenes
  • Waste Water
  • Water Pollutants, Chemical
  • musk
  • galaxolide
  • acetyl methyl tetramethyl tetralin
  • Eugenol
  • Limonene
  • linalool
  • lilial
  • benzyl salicylate