Rare earth-modified kaolin/NaY-supported Pd-Pt bimetallic catalyst for the catalytic combustion of benzene

ACS Appl Mater Interfaces. 2014 Aug 13;6(15):11988-96. doi: 10.1021/am500138q. Epub 2014 Aug 1.

Abstract

A new type of porous kaolin/NaY composite (KL-NY) with a large specific surface area and large pore sizes was synthesized through a one-step crystallization process, and rare earth-modified KL-NY-supported Pd-Pt catalysts were studied for benzene combustion. The results indicated that the pore volume and specific surface area of KL-NY after calcination and crystallization were 0.298 cm(3)/g and 365 m(2)/g, respectively, exhibiting appropriate pore structure and good thermal stability. Catalysts with rare earth metals greatly enhanced the activity of Pd/KL-NY, and the addition of Pt and Ce into the Pd catalyst improved the catalytic activity as well as the stability. The catalyst with an optimal Ce content and Pt/Pd molar ratio (0.2%Pd-Pt (6:1)/6%Ce/KL-NY) demonstrated the best activity for the complete oxidation of benzene at 230 °C, and the catalyst above maintained the 100% benzene conversion for 960 h.

Publication types

  • Research Support, Non-U.S. Gov't