Aggregation and segregation of confined active particles

Soft Matter. 2014 Sep 14;10(34):6477-84. doi: 10.1039/c4sm00927d.

Abstract

We simulate a model of self-propelled disks with soft repulsive interactions confined to a box in two dimensions. For small rotational diffusion rates, monodisperse disks spontaneously accumulate at the walls. At low densities, interaction forces between particles are strongly inhomogeneous, and a simple model predicts how these inhomogeneities alter the equation of state. At higher densities, collective effects become important. We observe signatures of a jamming transition at a packing fraction ϕ ∼ 0.88, which is also the jamming point for non-active athermal monodisperse disks. At this ϕ, the system develops a critical finite active speed necessary for wall aggregation. At packing fractions above ϕ ∼ 0.6, the pressure decreases with increasing density, suggesting that strong interactions between particles are affecting the equation of state well below the jamming transition. A mixture of bidisperse disks segregates in the absence of any adhesion, identifying a new mechanism that could contribute to cell sorting in embryonic development.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Gases
  • Models, Theoretical*
  • Pressure

Substances

  • Gases