Molecular insights into the electric double layers of ionic liquids on Au(100) electrodes

ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12556-65. doi: 10.1021/am502413m. Epub 2014 Jul 21.

Abstract

The electric double layer structure and differential capacitance of single crystalline Au(100) electrodes in the ionic liquid 1-butyl-3-methyl-imidazolium hexafluorophosphate are investigated using molecular dynamics simulations. Results show strong adsorption on the electrode surface. The potential of zero charge (pzc) and maxima of differential capacitance are strongly dependent on the adsorption layer structure. At potentials near the pzc, cations and anions adjacent to the electrode surface are coadsorbed on the same screening layer. This strong adsorption layer results in overscreening effects on the compact layer and induces both a bell-shaped differential capacitance curve and a positive pzc. Moreover, the potential required for transition from overscreening to overcrowding is about 4.0 V. This transition potential may be attributed to the higher interaction energy between the Au(100) electrode and ions compared with the binding energy in our cation-anion system.

Publication types

  • Research Support, Non-U.S. Gov't