Molecular iron(III) phosphonates: synthesis, structure, magnetism, and Mössbauer studies

Inorg Chem. 2014 Aug 4;53(15):8147-54. doi: 10.1021/ic5012154. Epub 2014 Jul 21.

Abstract

The reaction of Fe(ClO4)2·6H2O with t-BuPO3H2 or Cl3CPO3H2 in the presence of an ancillary pyrazole phenolate as a coligand, H2phpzH [H2phpzH = 3(5)-(2-hydroxyphenyl)pyrazole], afforded tetra- and pentanuclear Fe(III) phosphonate complexes [Fe4(t-BuPO3)4(HphpzH)4]·5CH3CN·5CH2Cl2 (1) and [HNEt3]2[Fe5(μ3-O)(μ-OH)2 (Cl3CPO3)3(HphpzH)5(μ-phpzH]·3CH3CN·2H2O (2). Single-crystal X-ray structural analysis reveals that 1 possesses a cubic double-4-ring (D4R) core similar to what is found in zeolites. The molecular structure of 2 reveals it to be pentanuclear. It crystallizes in the chiral P1 space group. Magnetic studies on 1 and 2 have also been carried out, which reveal that the bridging phosphonate ligands mediate weak antiferromagnetic interactions between the Fe(III) ions. Magnetization dynamics of 1 and 2 have been corroborated by a Mössbauer spectroscopy analysis.