A chloroplast-localized DEAD-box RNA helicaseAtRH3 is essential for intron splicing and plays an important role in the growth and stress response in Arabidopsis thaliana

Plant Physiol Biochem. 2014 Sep:82:309-18. doi: 10.1016/j.plaphy.2014.07.006. Epub 2014 Jul 10.

Abstract

Although many DEAD-box RNA helicases (RHs) are targeted to chloroplasts, the functional roles of the majority of RHs are still unknown. Recently, the chloroplast-localized Arabidopsis thaliana AtRH3 has been demonstrated to play important roles in intron splicing, ribosome biogenesis, and seedling growth. To further understand the functional role of AtRH3 in intron splicing and growth and the stress response in Arabidopsis, the newly-generated artificial microRNA-mediated knockdown plants as well as the previously characterized T-DNA tagged rh3-4 mutant were analyzed under normal and stress conditions. The rh3 mutants displayed retarded growth and pale-green phenotypes, and the growth of mutant plants was inhibited severely under salt or cold stress but marginally under dehydration stress conditions. Splicing of several intron-containing chloroplast genes was defective in the mutant plants. Importantly, splicing of ndhA and ndhB genes was severely inhibited in the mutant plants compared with the wild-type plants under salt or cold stress but not under dehydration stress conditions. Moreover, AtRH3 complemented the growth-defect phenotype of the RNA chaperone-deficient Escherichia coli mutant and had the ability to disrupt RNA and DNA base pairs, indicating that AtRH3 possesses RNA chaperone activity. Taken together, these results demonstrate that AtRH3 plays a prominent role in the growth and stress response of Arabidopsis, and suggest that proper splicing of introns governed by RNA chaperone activity of AtRH3 is crucial for chloroplast function and the growth and stress response of plants.

Keywords: Abiotic stress; Arabidopsis thaliana; Chloroplast; DEAD-box RNA helicase; Intron splicing; RNA chaperone.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / enzymology*
  • Arabidopsis / genetics
  • Arabidopsis / metabolism*
  • Arabidopsis / physiology
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism
  • Chloroplasts / enzymology*
  • Chloroplasts / genetics
  • Chloroplasts / metabolism*
  • Chloroplasts / physiology
  • RNA Splicing / genetics*

Substances

  • Arabidopsis Proteins