Antimicrobial histones and DNA traps in invertebrate immunity: evidences in Crassostrea gigas

J Biol Chem. 2014 Sep 5;289(36):24821-31. doi: 10.1074/jbc.M114.576546. Epub 2014 Jul 17.

Abstract

Although antimicrobial histones have been isolated from multiple metazoan species, their role in host defense has long remained unanswered. We found here that the hemocytes of the oyster Crassostrea gigas release antimicrobial H1-like and H5-like histones in response to tissue damage and infection. These antimicrobial histones were shown to be associated with extracellular DNA networks released by hemocytes, the circulating immune cells of invertebrates, in response to immune challenge. The hemocyte-released DNA was found to surround and entangle vibrios. This defense mechanism is reminiscent of the neutrophil extracellular traps (ETs) recently described in vertebrates. Importantly, oyster ETs were evidenced in vivo in hemocyte-infiltrated interstitial tissues surrounding wounds, whereas they were absent from tissues of unchallenged oysters. Consistently, antimicrobial histones were found to accumulate in oyster tissues following injury or infection with vibrios. Finally, oyster ET formation was highly dependent on the production of reactive oxygen species by hemocytes. This shows that ET formation relies on common cellular and molecular mechanisms from vertebrates to invertebrates. Altogether, our data reveal that ET formation is a defense mechanism triggered by infection and tissue damage, which is shared by relatively distant species suggesting either evolutionary conservation or convergent evolution within Bilateria.

Keywords: Antimicrobial Peptide (AMP); DNA; Innate Immunity; Invertebrate; Mollusk; NET; Reactive Oxygen Species (ROS).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptive Immunity / immunology*
  • Amino Acid Sequence
  • Animals
  • Anti-Infective Agents / immunology
  • Anti-Infective Agents / metabolism
  • Anti-Infective Agents / pharmacology
  • Bacteria / classification
  • Bacteria / drug effects
  • Crassostrea / immunology*
  • Crassostrea / metabolism
  • Crassostrea / microbiology
  • Extracellular Traps / immunology*
  • Extracellular Traps / metabolism
  • Hemocytes / immunology
  • Hemocytes / metabolism
  • Histones / genetics
  • Histones / immunology*
  • Histones / metabolism
  • Host-Pathogen Interactions / immunology
  • Invertebrates / immunology*
  • Invertebrates / metabolism
  • Invertebrates / microbiology
  • Microbial Sensitivity Tests
  • Microscopy, Confocal
  • Microscopy, Fluorescence
  • Molecular Sequence Data
  • Reactive Oxygen Species / immunology
  • Reactive Oxygen Species / metabolism
  • Vibrio / immunology
  • Vibrio / physiology

Substances

  • Anti-Infective Agents
  • Histones
  • Reactive Oxygen Species