Impact of corn earworm injury on yield of transgenic corn producing Bt toxins in the Carolinas

J Econ Entomol. 2014 Jun;107(3):1101-9. doi: 10.1603/ec13516.

Abstract

Transgenic corn, Zea mays L., hybrids expressing insecticidal Cry proteins from Bacillus thuringiensis (Bt) and insecticide applications to suppress injury from Helicoverpa zea (Boddie) were evaluated in Florence, SC, and in Plymouth, NC, in 2012 and 2013. Based on kernel area injured, insecticide applications (chlorantraniliprole) every 3-4 d from R1 until H. zea had cycled out of corn reduced injury by 80-93% in Florence and 94-95% in Plymouth. Despite intensive applications of insecticide (13-18 per trial), limited injury still occurred in all treated plots in 2012, except in DKC 68-03 (Genuity VT Double PRO), based on kernels injured (both locations) and proportion of injured ears (Florence only). In 2013, ear injury was low in Plymouth, with no kernel injury in any insecticide-treated plots, except P1498R (non-Bt) and P1498YHR (Optimum Intrasect). Injury in Florence in 2013 did not occur in treated plots of DKC 68-04 (non-Bt), DKC 68-03 (Genuity VT Double PRO), and N785-3111 (Agrisure Viptera). Yields were not significantly affected by insecticide treatment and were not statistically different among near-isolines with and without Bt traits. Yields were not significantly associated with kernel injury based on regression analyses. The value of using Bt corn hybrids to manage H. zea is discussed.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bacillus thuringiensis / genetics*
  • Bacillus thuringiensis Toxins
  • Bacterial Proteins / genetics*
  • Bacterial Proteins / metabolism
  • Endotoxins / genetics*
  • Endotoxins / metabolism
  • Food Chain*
  • Hemolysin Proteins / genetics*
  • Hemolysin Proteins / metabolism
  • Insecticide Resistance
  • Larva / growth & development
  • Larva / physiology
  • Moths / growth & development
  • Moths / physiology*
  • Pest Control, Biological / methods*
  • Plants, Genetically Modified / genetics
  • Plants, Genetically Modified / growth & development
  • Zea mays / genetics*
  • Zea mays / growth & development*

Substances

  • Bacillus thuringiensis Toxins
  • Bacterial Proteins
  • Endotoxins
  • Hemolysin Proteins
  • insecticidal crystal protein, Bacillus Thuringiensis