Alteration of sexual reproduction and genetic diversity in the kelp species Laminaria digitata at the southern limit of its range

PLoS One. 2014 Jul 14;9(7):e102518. doi: 10.1371/journal.pone.0102518. eCollection 2014.

Abstract

Adaptation to marginal habitats at species range-limits has often been associated with parthenogenetic reproduction in terrestrial animals and plants. Laboratory observations have shown that brown algae exhibit a high propensity for parthenogenesis by various mechanisms. The kelp Laminaria digitata is an important component of the ecosystem in Northern European rocky intertidal habitats. We studied four L. digitata populations for the effects of marginality on genetic diversity and sexual reproduction. Two populations were marginal: One (Locquirec, in Northern Brittany) was well within the geographic range, but was genetically isolated from other populations by large stretches of sandy beaches. Another population was at the range limits of the species (Quiberon, in Southern Brittany) and was exposed to much higher seasonal temperature changes. Microsatellite analyses confirmed that these populations showed decreased genetic and allelic diversity, consistent with marginality and genetic isolation. Sporophytes from both marginal populations showed greatly diminished spore-production compared to central populations, but only the southern-limit population (Quiberon) showed a high propensity for producing unreduced (2N) spores. Unreduced 2N spores formed phenotypically normal gametophytes with nuclear area consistent with ≥2N DNA contents, and microsatellite studies suggested these were produced at least in part by automixis. However, despite this being the dominant path of spore production in Quiberon sporophyte individuals, the genetic evidence indicated the population was maintained mostly by sexual reproduction. Thus, although spore production and development showed the expected tendency of geographical parthenogenesis in marginal populations, this appeared to be a consequence of maladaptation, rather than an adaptation to, life in a marginal habitat.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ecosystem
  • Genetic Variation*
  • Geography
  • Laminaria / genetics*
  • Laminaria / physiology
  • Microsatellite Repeats
  • Ploidies
  • Reproduction / physiology
  • Reproductive Isolation
  • Seawater
  • Temperature

Grants and funding

V. Oppliger was supported by a CONICYT-FRENCH EMBASSY Ph.D. grant. P. von Dassow was supported by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programme (Grant PIIF-GA-2008-221812). This study is part of the research programs FONDAP 1501-0001 Program 7, ANR ECOKELP (ANR 06 BDIV 012), “ARCUS” of the French Ministry of Foreign Affairs, and the Laboratoire International Associé “Dispersal and Adaptation of Marine Species (LIA DIAMS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.