Claudin Proteins And Neuronal Function

Curr Top Membr. 2010:65:229-253. doi: 10.1016/S1063-5823(10)65010-7.

Abstract

The identification and characterization of the claudin family of tight junction (TJ) proteins in the late 1990s ushered in a new era for research into the molecular and cellular biology of intercellular junctions. Since that time, TJs have been studied in the contexts of many diseases including deafness, male infertility, cancer, bacterial invasion and liver and kidney disorders. In this review, we consider the role of claudins in the nervous system focusing on the mechanisms by which TJs in glial cells are involved in neuronal function. Electrophysiological evidence suggests that claudins may operate in the central nervous system (CNS) in a manner similar to polarized epithelia. We also evaluate hypotheses that TJs are the gatekeepers of an immune-privileged myelin compartment and that TJs emerged during evolution to form major adhesive forces within the myelin sheath. Finally, we consider the implications of CNS myelin TJs in the contexts of behavioral disorders (schizophrenia) and demyelinating/hypomyelinating diseases (multiple sclerosis and the leukodystrophies), and explore evidence of a possible mechanism governing affective disorder symptoms in patients with white matter abnormalities.

Keywords: axoglial; experimental allergic encephalomyelitis; oligodendrocyte specific protein; proteolipid protein; radial component; saltatory conduction; transverse bands.