AC driven magnetic domain quantification with 5 nm resolution

Sci Rep. 2014 Jul 11:4:5594. doi: 10.1038/srep05594.

Abstract

As the magnetic storage density increases in commercial products, e.g. the hard disc drives, a full understanding of dynamic magnetism in nanometer resolution underpins the development of next-generation products. Magnetic force microscopy (MFM) is well suited to exploring ferromagnetic domain structures. However, atomic resolution cannot be achieved because data acquisition involves the sensing of long-range magnetostatic forces between tip and sample. Moreover, the dynamic magnetism cannot be characterized because MFM is only sensitive to the static magnetic fields. Here, we develop a side-band magnetic force microscopy (MFM) to locally observe the alternating magnetic fields in nanometer length scales at an operating distance of 1 nm. Variations in alternating magnetic fields and their relating time-variable magnetic domain reversals have been demonstrated by the side-band MFM. The magnetic domain wall motions, relating to the periodical rotation of sample magnetization, are quantified via micromagnetics. Based on the side-band MFM, the magnetic moment can be determined locally in a volume as small as 5 nanometers. The present technique can be applied to investigate the microscopic magnetic domain structures in a variety of magnetic materials, and allows a wide range of future applications, for example, in data storage and biomedicine.

Publication types

  • Research Support, Non-U.S. Gov't