Luteolin Inhibits the Activity, Secretion and Gene Expression of MMP-3 in Cultured Articular Chondrocytes and Production of MMP-3 in the Rat Knee

Biomol Ther (Seoul). 2014 May;22(3):239-45. doi: 10.4062/biomolther.2014.020.

Abstract

We investigated whether luteolin affects the gene expression, secretion and activity of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as production of MMP-3 in the rat knee to evaluate the potential chondro-protective effects of luteolin. Rabbit articular chondrocytes were cultured in a monolayer and IL-1β-induced gene expression levels of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen were measured by reverse transcription - polymerase chain reaction (RT-PCR). Effects of luteolin on interleukin-1β (IL-1β)-induced secretion and enzyme activity of MMP-3 in rabbit articular chondrocytes were investigated by western blot analysis and casein zymography, respectively. The effect of luteolin on MMP-3 protein production was also examined in vivo. The results were as follows: (1) luteolin inhibited the gene expression levels of MMP-3, MMP-1, MMP-13, ADAMTS-4 and ADAMTS-5. However, it increased the gene expression level of collagen in rabbit articular chondrocytes; (2) luteolin inhibited the secretion and activity of MMP-3; (3) luteolin inhibited in vivo production of MMP-3 protein. These results suggest that luteolin can regulate the gene expression, secretion and activity of MMP-3, by directly acting on articular chondrocytes.

Keywords: Chondrocyte; Luteolin; Osteoarthritis.