Overcoming hypoxic-resistance of tumor cells to TRAIL-induced apoptosis through melatonin

Int J Mol Sci. 2014 Jul 4;15(7):11941-56. doi: 10.3390/ijms150711941.

Abstract

A solid tumor is often exposed to hypoxic or anoxic conditions; thus, tumor cell responses to hypoxia are important for tumor progression as well as tumor therapy. Our previous studies indicated that tumor cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell apoptosis under hypoxic conditions. Melatonin inhibits cell proliferation in many cancer types and induces apoptosis in some particular cancer types. Here, we examined the effects of melatonin on hypoxic resistant cells against TRAIL-induced apoptosis and the possible mechanisms of melatonin in the hypoxic response. Melatonin treatment increased TRAIL-induced A549 cell death under hypoxic conditions, although hypoxia inhibited TRAIL-mediated cell apoptosis. In a mechanistic study, hypoxia inducible factor-1α and prolyl-hydroxylase 2 proteins, which increase following exposure to hypoxia, were dose-dependently down-regulated by melatonin treatment. Melatonin also blocked the hypoxic responses that reduced pro-apoptotic proteins and increased anti-apoptotic proteins including Bcl-2 and Bcl-xL. Furthermore, melatonin treatment reduced TRAIL resistance by regulating the mitochondrial transmembrane potential and Bax translocation. Our results first demonstrated that melatonin treatment induces apoptosis in TRAIL-resistant hypoxic tumor cells by diminishing the anti-apoptotic signals mediated by hypoxia and also suggest that melatonin could be a tumor therapeutic tool by combining with other apoptotic ligands including TRAIL, particularly in solid tumor cells exposed to hypoxia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antioxidants / pharmacology*
  • Apoptosis / drug effects*
  • Cell Hypoxia
  • Cell Line, Tumor
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism
  • Hypoxia-Inducible Factor-Proline Dioxygenases / genetics
  • Hypoxia-Inducible Factor-Proline Dioxygenases / metabolism
  • Melatonin / pharmacology*
  • Proto-Oncogene Proteins c-bcl-2 / genetics
  • Proto-Oncogene Proteins c-bcl-2 / metabolism
  • Receptors, TNF-Related Apoptosis-Inducing Ligand / metabolism*
  • bcl-X Protein / genetics
  • bcl-X Protein / metabolism

Substances

  • Antioxidants
  • HIF1A protein, human
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Proto-Oncogene Proteins c-bcl-2
  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • bcl-X Protein
  • EGLN1 protein, human
  • Hypoxia-Inducible Factor-Proline Dioxygenases
  • Melatonin