Oxidative and proteolytic profiles of the right and left heart in a model of cancer-induced cardiac cachexia

Pathophysiology. 2014 Nov;21(4):257-65. doi: 10.1016/j.pathophys.2014.05.003. Epub 2014 Jun 2.

Abstract

Cardiac cachexia is a syndrome that has received increased attention in recent years. Although an association between proteolysis and cardiac cachexia has been proposed, the direct influence of oxidative stress on the process has not been demonstrated. In the present study, the right (RH) and left (LH) hearts (atrium and ventricle of each side of the heart) were collected from rats at the 5th and 10th days after phosphate buffer (control) orWalker-256 solid tumour implantation. Immediately after sacrifice, cachexia was determined in tumour-bearing animals by the formula: [(inicial body weight-final body weight+tumour weight+weight gain of control group)/(initial body weight+body mass gain of control group)]×100%; RH and LH were stored until use. Oxidative stress and proteolysis were determined in each collected sample. In addition, heart samples were collected from a separate set of animals to determine the thickness of the left and right ventricles. Cachexia values increased over time after tumour implantation from 6.85% at the 5th day to 17.76% at the 10th day. There was no significant difference in LH wet weight and ventricle thickness compared with the control, where as RH wet weight (0.109±0.09g at the 5th day and 0.093±0.09g at the 10th day) and thickness (420±16μm at the 5th day and 279±08μm at the 10th day) were significantly decreased at both time points when compared with control values (0.153±0.06g and 607±21μm, respectively). tert-Butyl-stimulated chemiluminescence analysis revealed a significant increase in the LH and decrease in the RH oxidative stress profiles. Carbonylated proteins increased in the LH (140%, p<0.05) and RH (100%, p<0.05) at the 5th day, and significantly decreased in both sides on the 10th day compared to controls. Chemotrypsin-like, caspase-like, and calpain-like activities were evaluated by chemiluminescence, and only calpain-like activity was found to increase at the 5th day in the RH. In the LH, all proteolytic activities systems were decreased when compared with controls. Together, these results demonstrate that oxidative stress appears to play a different role in mass modulation on the LH and RH. The proteolytic systems evaluated herein also appear to have different effects on the responses developed during cardiac cachexia in the two sides of the heart.

Keywords: Cardiac atrophy; Cardiac cachexia; Oxidative stress.