A highly conducting graphene film with dual-side molecular n-doping

Nanoscale. 2014 Aug 21;6(16):9545-9. doi: 10.1039/c4nr00479e.

Abstract

Doping is an efficient way to engineer the conductivity and the work function of graphene, which is, however, limited to wet-chemical doping or metal deposition particularly for n-doping, Here, we report a simple method of modulating the electrical conductivity of graphene by dual-side molecular n-doping with diethylenetriamine (DETA) on the top and amine-functionalized self-assembled monolayers (SAMs) at the bottom. The resulting charge carrier density of graphene is as high as -1.7 × 10(13) cm(-2), and the sheet resistance is as low as ∼86 ± 39 Ω sq(-1), which is believed to be the lowest sheet resistance of monolayer graphene reported so far. This facile dual-side n-doping strategy would be very useful to optimize the performance of various graphene-based electronic devices.

Publication types

  • Research Support, Non-U.S. Gov't