Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides

ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12541-9. doi: 10.1021/am502435x. Epub 2014 Jul 15.

Abstract

We explored a single-step approach for the rapid growth of Ag nanoshells (Ag NSs) under mild conditions. Without predeposition of seed metals, a uniform and complete layer of Ag shells was rapidly formed on silica core particles within 2 min at 25 °C via single electron transfer from octylamine to Ag(+) ions. The size and thickness of the Ag NSs were effectively tuned by adjusting the concentration of silica nanoparticles (silica NPs) with optimal concentrations of AgNO3 and octylamine. This unusually rapid growth of Ag NSs was attributed to a significant increase in the reduction potential of the Ag(+) ions in ethylene glycol (EG) through the formation of an Ag/EG complex, which in turn led to their facile reduction by octylamine, even at room temperature. A substantial enhancement in the surface-enhanced Raman scattering (SERS) of the prepared Ag NSs was demonstrated. The Ag NSs were also utilized as SERS-active nanostructures for label-free detection of the pesticide thiram. The Ag NS-based SERS approach successfully detected thiram on apple peel down to the level of 38 ng/cm(2) in a label-free manner, which is very promising with respect to its potential use for the on-site detection of residual pesticides.

Publication types

  • Research Support, Non-U.S. Gov't