Insight into PreImplantation Factor (PIF*) mechanism for embryo protection and development: target oxidative stress and protein misfolding (PDI and HSP) through essential RIKP [corrected] binding site

PLoS One. 2014 Jul 1;9(7):e100263. doi: 10.1371/journal.pone.0100263. eCollection 2014.

Abstract

Background: Endogenous PIF, upon which embryo development is dependent, is secreted only by viable mammalian embryos, and absent in non-viable ones. Synthetic PIF (sPIF) administration promotes singly cultured embryos development and protects against their demise caused by embryo-toxic serum. To identify and characterize critical sPIF-embryo protein interactions novel biochemical and bio-analytical methods were specifically devised.

Methods: FITC-PIF uptake/binding by cultured murine and equine embryos was examined and compared with scrambled FITC-PIF (control). Murine embryo (d10) lysates were fractionated by reversed-phase HPLC, fractions printed onto microarray slides and probed with Biotin-PIF, IDE and Kv1.3 antibodies, using fluorescence detection. sPIF-based affinity column was developed to extract and identify PIF-protein interactions from lysates using peptide mass spectrometry (LC/MS/MS). In silico evaluation examined binding of PIF to critical targets, using mutation analysis.

Results: PIF directly targets viable cultured embryos as compared with control peptide, which failed to bind. Multistep Biotin-PIF targets were confirmed by single-step PIF-affinity column based isolation. PIF binds protein disulfide isomerases a prolyl-4-hydroxylase β-subunit, (PDI, PDIA4, PDIA6-like) containing the antioxidant thioredoxin domain. PIF also binds protective heat shock proteins (70&90), co-chaperone, BAG-3. Remarkably, PIF targets a common RIKP [corrected] site in PDI and HSP proteins. Further, single PIF amino acid mutation significantly reduced peptide-protein target bonding. PIF binds promiscuous tubulins, neuron backbones and ACTA-1,2 visceral proteins. Significant anti-IDE, while limited anti-Kv1.3b antibody-binding to Biotin-PIF positive lysates HPLC fractions were documented.

Conclusion: Collectively, data identifies PIF shared targets on PDI and HSP in the embryo. Such are known to play a critical role in protecting against oxidative stress and protein misfolding. PIF-affinity-column is a novel utilitarian method for small molecule targets direct identification. Data reveals and completes the understanding of mechanisms involved in PIF-induced autotrophic and protective effects on the embryo.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Binding Sites
  • Computer Simulation
  • Embryo, Mammalian / metabolism*
  • Embryonic Development
  • Horses / embryology
  • Mice
  • Models, Molecular
  • Oxidative Stress
  • Peptides / chemistry
  • Peptides / metabolism
  • Peptides / physiology*
  • Protein Folding*
  • Protein Structure, Tertiary
  • Thioredoxins / metabolism

Substances

  • Peptides
  • preimplantation factor, mouse
  • Thioredoxins

Grants and funding

The authors have no support or funding to report.