Positive correlations between genomic %AT and genome size within strains of bacterial species

Environ Microbiol Rep. 2014 Jun;6(3):278-86. doi: 10.1111/1758-2229.12145. Epub 2014 Mar 25.

Abstract

Genomic %AT has been found to correlate negatively with genome size in microbes. While microbes with large genomes are often GC rich and free living, AT-rich bacteria tend to be host associated with smaller genomes. With over 2000 fully sequenced and assembled microbial genomes available, we explored the relationship among genomic %AT, genome size, relative entropy (a measure associated with genetic drift) and fraction of genome islands (GIs) in microbial species with the genomes of more than 10 strains available. A negative correlation with genome size was found in six out of 12 phylogenetic groups and subphyla and a positive correlation in only two. At the species level, we found a trend of positive correlations between genomic %AT and genome size in eight out of 20 species, while only four showed a negative correlation. Estimated chromosomal fractions of GIs were found to correlate positively with genome size in the strains of 14 out of 18 species and genomic %AT in the strains of seven species (two correlated negatively). Although GIs explain most of the observed positive correlations between genomic %AT and size, Chlamydia trachomatis seem to be an exception; therefore, these findings needs to be further explored.

MeSH terms

  • Bacteria / genetics*
  • Base Composition*
  • Genome Size*
  • Genome, Bacterial*