An early South Asian dust storm during March 2012 and its impacts on Indian Himalayan foothills: a case study

Sci Total Environ. 2014 Sep 15:493:526-34. doi: 10.1016/j.scitotenv.2014.06.024. Epub 2014 Jun 26.

Abstract

The impacts of an early South Asian dust storm that originated over the western part of the Middle East and engulfed northwest parts of India during the third week of March 2012 have been studied at four different stations covering India and Pakistan. The impacts of this dust storm on aerosol optical properties were studied in detail at Delhi, Jodhpur, Lahore and Karachi. The impact could also be traced up to central Himalayan foothills at Manora Peak. During dust events, the aerosol optical depth (AOD) at 500 nm reached a peak value of 0.96, 1.02, 2.17 and 0.49 with a corresponding drop in Ångström exponent (AE for 440-870 nm) to 0.01, -0.02, 0.00 and 0.12 at Delhi, Jodhpur, Lahore and Karachi, respectively. The single scattering albedo (SSA) at 675 nm was relatively lower at Delhi (0.87) and Jodhpur (0.86), with absorption Ångström exponent (AAE) less than 1.0, but a large value of SSA was observed at Lahore (0.98) and Karachi (0.93), with AAE value greater than 1.0 during the event. The study of radiative impact of dust aerosols revealed a significant cooling at the surface and warming in the atmosphere (with corresponding large heating rate) at all the stations during dust event. The effect of this dust storm was also seen at Manora Peak in central Himalayas which showed an enhancement of ~28% in the AOD at 500 nm. The transport of dust during such events can have severe climatic implications over the affected plains and the Himalayas.

Keywords: Aerosol properties; Aerosols; Himalayas; Radiative forcing; South Asian dust storm.