Self-catalyzed ternary core-shell GaAsP nanowire arrays grown on patterned Si substrates by molecular beam epitaxy

Nano Lett. 2014 Aug 13;14(8):4542-7. doi: 10.1021/nl501565b. Epub 2014 Jul 2.

Abstract

The growth of self-catalyzed ternary core-shell GaAsP nanowire (NW) arrays on SiO2 patterned Si(111) substrates has been demonstrated by using solid-source molecular beam epitaxy. A high-temperature deoxidization step up to ∼ 900 °C prior to NW growth was used to remove the native oxide and/or SiO2 residue from the patterned holes. To initiate the growth of GaAsP NW arrays, the Ga predeposition used for assisting the formation of Ga droplets in the patterned holes, was shown to be another essential step. The effects of the patterned-hole size on the NW morphology were also studied and explained using a simple growth model. A lattice-matched radial GaAsP core-shell NW structure has subsequently been developed with room-temperature photoluminescence emission around 740 nm. These results open up new perspectives for integrating position-controlled III-V NW photonic and electronic structures on a Si platform.

Publication types

  • Research Support, Non-U.S. Gov't