Toxicity of naturally-contaminated manganese soil to selected crops

J Agric Food Chem. 2014 Jul 23;62(29):7287-96. doi: 10.1021/jf5010176. Epub 2014 Jul 9.

Abstract

The impact of manganese excess using naturally contaminated soil (Mn-soil, pseudototal Mn 6494 vs 675 μg g(-1) DW in control soil) in the shoots of four crops was studied. Mn content decreased in the order Brassica napus > Hordeum vulgare > Zea mays > Triticum aestivum. Growth was strongly depressed just in Brassica (containing 13696 μg Mn g(-1) DW). Some essential metals (Zn, Fe) increased in Mn-cultured Brassica and Zea, while macronutrients (K, Ca, Mg) decreased in almost all species. Toxic metals (Ni and Cd) were rather elevated in Mn-soil. Microscopy of ROS, NO, lipid peroxidation, and thiols revealed stimulation in all Mn-cultured crops, but changes were less visible in Triticum, a species with low shoot Mn (2363 μg g(-1) DW). Antioxidative enzyme activities were typically enhanced in Mn-cultured plants. Soluble phenols increased in Brassica only while proteins rather decreased in response to Mn excess. Inorganic anions (chloride, sulfate, and phosphate) were less accumulated in almost all Mn-cultured crops, while the nitrate level rather increased. Organic anions (malate, citrate, oxalate, acetate, and formate) decreased or remained unaffected in response to Mn-soil culture in Brassica, Hordeum, and Triticum but not in Zea. However, the role of organic acids in Mn uptake in these species is not assumed. Because control and Mn-soil differed in pH (6.5 and 3.7), we further studied its impact on Mn uptake in solution culture (using Mn concentration ∼5 mM deducted from water-soluble fraction of Mn-soil). Shoot Mn contents in Mn-treated plants were similar to those observed in soil culture (high in Brassica and low in Triticum) and pH had negligible impact. Fluorescence indicator of "general ROS" revealed no extensive or pH-dependent impact either in control or Mn-cultured roots. Observed toxicity of Mn excess to common crops urges for selection of cultivars with higher tolerance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crops, Agricultural / drug effects*
  • Manganese / toxicity*
  • Microscopy, Fluorescence
  • Soil Pollutants / toxicity*

Substances

  • Soil Pollutants
  • Manganese