Kinetic and equilibrium studies of bile salt-liposome interactions

J Liposome Res. 2015 Mar;25(1):58-66. doi: 10.3109/08982104.2014.928888. Epub 2014 Jun 24.

Abstract

Research has suggested that exposure to sub-micellar concentrations of bile salts (BS) increases the permeability of lipid bilayers in a time-dependent manner. In this study, incubation of soy phosphatidylcholine small unilamellar vesicles (liposomes) with sub-micellar concentrations of cholate (C), deoxycholate (DC), 12-monoketocholate (MKC) or taurocholate (TC) in pH 7.2 buffer increased membrane fluidity and negative zeta potential in the order of increasing BS liposome-pH 7.2 buffer distribution coefficients (MKC < C ≈ TC < DC). In liposomes labeled with the dithionite-sensitive fluorescent lipid N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)phosphatidylethanolamine (NBD-PE) in both leaflets and equilibrated with sub-micellar concentrations of BS, fluorescence decline during continuous exposure to dithionite was biphasic involving a rapid initial phase followed by a slower second phase. Membrane permeability to dithionite as measured by the rate of the second phase increased in the order control < MKC < TC ∼ C < DC. In liposomes labeled with NBD-PE in the inner leaflet only and incubated with the same concentrations of C, DC and MKC, membrane permeability to dithionite initially increased very rapidly in the order MKC < C < DC before impermeability to dithionite was restored after which fluorescence decline was consistent with NBD-PE flip-flop. For liposomes incubated with TC, membrane permeability to dithionite was only slightly increased and the decline in fluorescence was mainly the result of NBD-PE flip-flop. These results provide evidence that BS interact with lipid bilayers in a time-dependent manner that is different for conjugated and unconjugated BS. MKC appears to cause least disturbance to liposomal membranes but, when the actual MKC concentration in liposomes is taken into account, MKC is actually the most disruptive.

Keywords: Bile salts; distribution coefficient; dithionite; liposomes; membrane fluidity; membrane permeability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bile Acids and Salts / chemistry*
  • Cell Membrane Permeability
  • Cholates / chemistry*
  • Dithionite / chemistry
  • Hydrogen-Ion Concentration
  • Kinetics
  • Liposomes / chemistry*
  • Membrane Fluidity

Substances

  • Bile Acids and Salts
  • Cholates
  • Liposomes
  • Dithionite